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ABSTRACT:
This work proposes a method to predict the sound absorption coefficient of finite porous absorbers using a residual

neural network and a single-layer microphone array. The goal is to mitigate the discrepancies between predicted and

measured data due to the finite-size effect for a wide range of rectangular absorbers with varying dimensions and

flow resistivity and for various source-receiver locations. Data for training, validation, and testing are generated with

a boundary element model consisting of a baffled porous layer on a rigid backing using the Delany–Bazley–Miki

model. In effect, the network learns relevant features from the array pressure amplitude to predict the sound absorp-

tion as if the porous material were infinite. The method’s performance is quantified with the error between the pre-

dicted and theoretical sound absorption coefficients and compared with the two-microphone method. For array

distances close to the porous sample, the proposed method performs at least as well as the two-microphone method

and significantly better than it for frequencies below 400 Hz and small absorber sizes (e.g., 20� 20 cm2). The signifi-

cance of the study lies in the possibility of measuring sound absorption on-site in the presence of strong edge diffrac-

tion. VC 2023 Acoustical Society of America. https://doi.org/10.1121/10.0021333
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[Editor: Zoi-Heleni Michalopoulou] Pages: 2321–2332

I. INTRODUCTION

Free-field or in situ methods of measuring the sound

absorption of acoustic materials aim at inferring the absorp-

tion properties (e.g., surface impedance and reflection and

absorption coefficients) from measurements of the sound

field in the vicinity of the measurement sample (Alkmim

et al., 2021; Allard and Sieben, 1985; Brand~ao et al., 2015;

Li and Hodgson, 1997; Mommertz, 1995). Although not

standardized, the attractiveness of these methods lies in the

fact that they provide angle-dependent absorption data

[which cannot be measured with standardized methods

(ISO, 1998, 2003)] and are applicable for materials mounted

for their intended application. In situ methods rely on a

mathematical model of the sound field above the material

and generally assume the sample is much larger than

the wavelength, i.e., the reflected field is predominantly

specular. In the low- to the mid-frequency range, such an

assumption is violated due to the sample’s finiteness, and

the so-called “edge-diffraction effect” (or “finite-size

effect”) leads to bias errors between prediction and experi-

mental data (de Bruijn, 1973; Thomasson, 1980). This bias

is negligible at high frequencies with a much smaller wave-

length than the sample size.

Considerable effort has been put into the problem of

measuring the sound absorption of finite-size samples in
situ. In particular, previous studies have compared experi-

mental data with boundary element method (BEM) simula-

tions to describe and account for the edge-diffraction effect

(see, e.g., Brand~ao et al., 2012; Hirosawa et al., 2009; Luo

et al., 2020; Otsuru et al., 2009). Recent studies have

attempted to characterize the edge-diffraction effect experi-

mentally (Ottink et al., 2016; Richard et al., 2017) and

numerically (Brand~ao and Fernandez-Grande, 2022). These

studies rely on a model of the sound field/absorber (or

hypotheses on the measurement scenario). Fewer studies

have used data to learn the edge-diffraction effect (M€uller-

Giebeler and Vorl€ander, 2021; Zea et al., 2021).

Machine learning (ML) has been successfully applied

in several acoustical problems (Bianco et al., 2019), as dem-

onstrated in the recent special issue of The Journal of The
Acoustical Society of America (Michalopoulou et al., 2021).
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Related works have studied the prediction of room-

acoustical parameters (G€otz et al., 2022; Yu and Kleijn,

2021) and mean room sound absorption (Foy et al., 2021)

from room impulse responses, as well as the prediction of

porous material parameters from ultrasonic images

(L€ahivaara et al., 2018), and transport parameters of fibrous

materials from x-ray images (Jeon et al., 2021). This paper

proposes an ML-based approach to predict the sound

absorption coefficient of finite porous samples. The strength

of the proposed method is that it removes the finite-size

effect without additional hypotheses on the sound field or

the absorber.

This study uses a residual neural network to map the

sound pressure field above the finite absorber to its sound

absorption coefficient. The main goal is to suppress the

edge-diffraction effect from the measurement by learning

features from the pressure field that are relevant to predict

the sound absorption coefficient as if the sample were infi-

nite. The network consists of a simplified ResNet architec-

ture (He et al., 2016a,b), which allows testing well-studied

ML models with a reasonable input size (here, the sound

pressure spectra in 12� 12 microphone positions). The

model is trained and tested with data generated with a

parameterized BEM model. The BEM simulation predicts

the sound pressure emitted by a monopole above baffled,

rectangular porous samples with uniform surface impedance

over the sample. The parameters of the BEM model include

the size and absorption characteristics of the sample, the

sound source, and the receiver’s distances and orientations

relative to the sample. Furthermore, the trained model sensi-

tivity is investigated regarding Gaussian noise and data out-

side the training set. The performance of the proposed

network is compared with the two-microphone method as a

benchmark (Allard and Sieben, 1985).

The outline of the paper is as follows. Section II

describes the generation of the training, validation, and test-

ing datasets via BEM. Section III describes the proposed

method. Section IV shows the results of training and testing

the proposed method, including a comparison with the two-

microphone method, and Sec. V includes a sensitivity analy-

sis. Conclusions are drawn in Sec. VI.

II. SOUND FIELD MODEL

A. Boundary element model

A simplified BEM model is considered, shown in

Fig. 1, in which a point source is located at rq ¼ ðxq; yq; zqÞ
and a receiver is located at r ¼ ðx; y; zÞ. The receiver posi-

tions correspond to the microphone array, used as data for

training and testing, and the two-microphone method, used

as benchmark data. A finite rectangular absorber sample of

dimensions Lx � Ly � d is flush mounted to an infinite hard

baffle at z¼ 0. The boundary condition in the upper half-

space is free-field. The time-harmonic factor ejxt is omitted

throughout.

The sound pressure, pðrÞ, can be written as the

Helmholtz/Huygens integral

cðrÞpðrÞ ¼ e�jk0kr�rqk

kr� rqk
þ e�jk0kr�r0qk

kr� r0qk

� jk0

Zs

ð
S

pðrsÞ �
e�jk0kr�rsk

4pkr� rsk
dS;

with

cðrÞ ¼
0:5; z ¼ 0;

1; z � 0;

(
(1)

where k0 ¼ 2pf=c0 is the acoustic wavenumber, f is the fre-

quency, c0 the speed of sound in air, j ¼
ffiffiffiffiffiffiffi
�1
p

; k � k
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
+j � j2

q
is the ‘2-norm of the vector, S is the surface

boundary of the absorber, and Zs is the surface impedance of

the finite sample. The receiver point r can be located above

or on the sample surface, and rs is any point at the surface

of the finite sample.

The first term on the right-hand side of Eq. (1) is the

Green’s function between the sound source and the receiver.

The second term is the Green’s function between the image

sound source, at r0q ¼ ðxq; yq;�zqÞ, and the receiver.

Together they form the sound field with only the infinite,

hard baffle as if the sample itself were absent. The last term

carries information about the absorption and diffraction of

the finite absorber, formulated as an integral over the finite

absorber area. Discretizing the surface of the sample into N
square elements and assuming that pðrsÞ is constant over

each element, Eq. (1) becomes

cðrÞpðrÞ ¼ e�jk0kr�rqk

kr� rqk
þ e�jk0kr�r0qk

kr� r0qk

� jk0

Zs

XN

n¼1

pðrsn
Þ �

ð
Sn

e�jk0kr�rsnk

4pkr� rsn
k dSn; (2)

where the collocation method is used by placing r ¼ rsn
at

n ¼ 1; 2;…;N on the surface of the sample, with

cðrÞ ¼ 0:5. Thus, a system of equations is formed, and the

surface pressure, pðrsn
Þ, at each element, can be found.

FIG. 1. (Color online) Schematic of the BEM simulation. The point source

(red) at rq excites the sound field at incidence angle ð/; hÞ. The absorber

(orange) is baffled at z¼ 0 cm, with dimensions Lx � Ly � d. The micro-

phone array (blue) is centered at (0, 0, 2) cm and has 12� 12 microphones

spaced by D¼ 5 cm. The receivers of the two-microphone method (yellow)

are placed at (0, 0, 1) cm and (0, 0, 3) cm. In this example, the receiver r

for the BEM calculation is Mic 2.
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Once the surface pressure is known, it can be re-inserted

into Eq. (2) to calculate the pressure at any receiver point

for z> 0, with cðrÞ ¼ 1:0.

The absorption term is modeled by a prescribed surface

impedance, Zs, constant across the finite sample’s surface.

The characteristic impedance and wavenumber for the

porous material are computed with the Delany–Bazley–Miki

(DBM) model (Miki, 1990) as

Zpðf Þ ¼ q0c0 1þ 5:501�0:632 � j8:431�0:632
� �

; (3)

kpðf Þ ¼ k0 1þ 7:811�0:618 � j11:411�0:618
� �

; (4)

where 1 � 1ðf ; rÞ ¼ 103f=r, q0 is the air density, and r is

the flow resistivity of the sample.

In the following, let us assume a hard-backed porous

layer of thickness d and a uniform surface impedance over

the sample. Thus, for a given angle of incidence h, the sur-

face impedance and absorption spectra can be calculated

according to Allard and Atalla (2009), as

Zsðf Þ ¼ �j
Zpðf Þ

cos ðhtÞ
cot kpðf Þd cos ðhtÞ
� �

; (5)

aðf Þ ¼ 1�
���� Zsðf Þ cos ðhÞ � q0c0

Zsðf Þ cos ðhÞ þ q0c0

����
2

; (6)

where ht ¼ arcsin½ðk0=kpÞ sin ðhÞ�.
The values of aðf Þ in Eq. (6) constitute the reference

absorption spectra, which are used as the labels (outputs) of

the ML model during training. Thus, the training set com-

prises sound fields of flushed porous absorbers following the

DBM model. This does not guarantee that an ML approach

trained with such data generalizes well to other material

models.

An array of 12� 12 receivers is considered in this

study. The array aperture is 0:6� 0:6 m, and the receivers

are spaced by D¼ 5 cm and placed at a distance of 2 cm

above the sample surface. The receiver spacing prevents

spatial aliasing up to the frequency fmax ¼ c0=ð2DÞ.1 The

highest simulated frequency is 2 kHz, with six boundary ele-

ments per wavelength. The integrals in Eq. (2) are calcu-

lated with linear interpolation and Gauss–Legendre

quadrature with 36 points on each element (Atalla and

Sgard, 2015; Wu, 2000). With the implemented configura-

tion, the quadrature points do not coincide with the element

center, which avoids singularities. Experimental validation

for such BEM simulations using single point estimates can

be found in Brand~ao et al. (2012).

In the present paper, the values of d and r used in the

BEM model are drawn from a log-uniform distribution, so

the sound absorption function is sampled smoothly. For the

range of material parameters found in practical scenarios,

the sound absorption function of the DBM material model

can have sharp changes for low values of thickness d and

flow resistivity r, especially at frequencies above 1600 Hz.

If the samples in the training set correspond to values of d

and r drawn from a uniform distribution, there is a risk that

the absorption function is not sufficiently sampled when d
and r are small. This can cause difficulties for the network

to generalize to cases in that ðd; rÞ region, as concluded

from (Zea et al., 2021). A comparison between realizations

of the two distributions is shown in Fig. 2. It can be

observed that the sound absorption function is sampled

more smoothly using the log-uniform distribution.

B. Datasets

A total of 330 000 sound field simulations above finite

absorbers2 have been computed with the BEM model from

Sec. II A. Out of these, 300 000 simulations correspond to

the training (T) and validation (V) datasets, 15 000 to the

interpolation (I) dataset, and the remaining 15 000 to the

extrapolation (X) dataset. The I and X datasets are test sets;

thus, they assess the network’s generalizability. A summary

of the BEM model parameters is found in Table I. All data-

sets (T, V, I, and X) share the same sampling distributions of

the sample size, thickness, flow resistivity, source azimuth/

elevation angles, number of microphones, and microphone

spacing. Each sound field simulation is run at the 14 center

frequencies of 1/3 octave bands from 100 Hz to 2000 Hz.

FIG. 2. (Color online) Influence of the sampling distribution of absorber

thickness d and flow resistivity r on the sound absorption coefficient func-

tion of the Delany–Bazley–Miki model (Miki, 1990) at 500 Hz. (a)

Realization with uniform sampling. (b) Realization with log-uniform

sampling.

TABLE I. Parameters of the BEM model used to generate the training (T),

validation (V), interpolation (I), and extrapolation (X) datasets.

Parameter Value Sampling Datasets

Sample side Lx [cm] ½20; 100� Uniform TVIX

Sample side Ly [cm] ½20; 100� Uniform TVIX

Thickness d [mm] ½5; 200� Log-uniform TVIX

Flow res. r [kNs/m4] ½5; 100� Log-uniform TVIX

Source distance krqk [m] ½1:2; 1:8� Uniform TVI

½0:7; 2:3� Uniform X

Source azimuth / [deg.] ½0; 360Þ Uniform TVIX

Source elevation h [deg.] ½0; 80� Uniform TVIX

No. microphones [—] 12� 12 Grid TVIX

Mic spacing D [cm] 5 — TVIX

Array distance z [cm] 2 – TVI

½2; 20� Uniform X

Array rotation [deg.] 0 — TVI

½�90; 90� Uniform X
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1. Training and validation datasets

The training and validation datasets have 240 000 and

60 000 instances, respectively, and are obtained using the

BEM parameters in Table I following the datasets T and V.

The BEM computations are done in two main steps: (i)

assembling the BEM matrix and (ii) computing the surface

impedance, the absorption coefficient, and the pressure field.

The first step is independent of the material properties and

the source and microphone array configuration. This signifi-

cantly accelerates the computations by choosing 3000 base

cases with fixed (but random) absorber sizes and pre-

assembling their corresponding BEM matrices. Then, each

base case is run for 100 random combinations of the rest of

the BEM parameters.

2. Interpolation dataset

The interpolation test set contains 15 000 instances gen-

erated with the same BEM model parameters as those in the

training set (following the dataset I in Table I). The only dif-

ference is that the absorber sizes do not correspond to the

3000 base cases from the training set but rather an additional

15 000 random sizes and parameters. This dataset assesses

the models’ performance against absorber sizes not seen in

the training set.

3. Extrapolation dataset

As with the interpolation set, the extrapolation set con-

tains 15 000 additional instances, generated with the BEM

model parameters chosen for the training set (following the

dataset X in Table I) with three differences:

• Expanded range of source distances: from krqk
2 ½1:2; 1:8� m to ½0:7; 2:3�m.

• Varying range of array distances: from z¼ 2 cm to

z 2 ½2; 20� cm.
• Varying range of array rotations: from no rotation to

[�90�, 90�] rotations.

This dataset assesses the model’s performance against

unseen absorber sizes, source distances, array distances, and

array rotations.

III. CONVOLUTIONAL NEURAL NETWORKS

In supervised learning, neural networks have been

widely applied to establish nonlinear mappings between

acoustical quantities. In particular, convolutional neural net-

works (CNNs) (LeCun et al., 1989) aim at learning local

features from the data at multiple resolution levels and

exploit these features for classification or regression (LeCun

et al., 2015). In contrast to fully connected neural networks

(e.g., multi-layer perceptron), CNNs enable shift-invariant

processing of high-dimensional data with fewer operations

(Liu et al., 2017). The cost reduction is achieved by sharing

weights and using shift-invariant filters (Goodfellow et al.,
2016). Indeed, it has been shown in the literature that learn-

ing shift-invariant features is highly relevant for sound field

reconstruction with microphone arrays (Hahmann et al.,
2021).

The building block of a CNN, the convolutional layer,

consists of a convolution between input feature maps and a

weighted kernel (or filter), followed by an activation func-

tion. In mathematical terms, we have

g
ðlÞ
j ¼ u

XI l�1

i¼1

g
ðl�1Þ
i ~w

ðlÞ
ji þ b

ðlÞ
j

 !
; j ¼ 1;…;J l; (7)

where g
ðl�1Þ
i is the ith input feature map to the lth layer, with

spatial dimensions Wl�1 � Hl�1. The symbol ~ denotes

two-dimensional convolution, and b
ðlÞ
j contains the bias

added in the jth feature map of the lth layer. The convolu-

tion kernel at the lth layer, w
ðlÞ
ji , has size Ul � Kl (typically

smaller than the spatial dimensions of the input,

Wl�1 � Hl�1), and it is applied to the input feature maps

g
ðl�1Þ
i ; i ¼ 1;…; I l�1. The J l output feature maps corre-

sponding to the lth layer are obtained by computing Eq. (7)

with the filter kernels w
ðlÞ
ji ; j ¼ 1;…;J l. The activation

function uð�Þ makes the map non-linear; an example is the

rectified linear unit (ReLU), uð�Þ ¼ maxf�; 0g (Nair and

Hinton, 2010).

A. Deep residual learning

The justification for adopting residual learning in this

study is to extract multiple features at different resolution

levels—relevant to map the edge-diffracted sound field to

the sound absorption coefficient while optimizing the num-

ber of computations and preventing the vanishing gradient

problem (Hochreiter, 1991). Empirical evidence shows that

deeper networks perform worse beyond a certain number of

layers than their shallower counterparts (He et al., 2016a).

He et al. introduced residual learning to counteract this issue

without sacrificing computational cost and performance.

The idea is to introduce residual blocks, which add a

“shortcut” (skip connection) from the input to the output of

the block. In essence, residual learning allows the network

to learn the identity function without adding trainable

parameters, so the performance of a ðDþ 1Þ-depth network

is at least as good as that of a D-depth network.

A typical residual block consists of two branches. A

skip connection branch entails an identity map, and a feature

extraction branch entails a sequence of a point-wise 1� 1

convolution,3 a convolutional layer, and another point-wise

convolution (He et al., 2016a). In mathematical terms, the

j ¼ 1;…;J l feature maps at the output of the residual block

are defined as

g
ðlÞ
j ¼ u

XI l�1

i¼1

g
ðl�1Þ
i ~w

ðlÞ
ji þ b

ðlÞ
j

 !
þ g

ðl�3Þ
j ; (8)

where g
ðl�3Þ
j is the jth feature map of the input to the residual

block. Note that Eq. (8) assumes that the skip connection

and feature extraction branches have the same number of

output maps, i.e., I l�2 ¼ J l. When this is not the case, a

2324 J. Acoust. Soc. Am. 154 (4), October 2023 Zea et al.

https://doi.org/10.1121/10.0021333

https://doi.org/10.1121/10.0021333


point-wise convolution is applied to the input feature maps

(e.g., Proj� 1 block in Fig. 3).

B. Proposed model

The proposed architecture, shown in Fig. 3, consists of

a deep CNN with four residual blocks and 17 layers, similar

in spirit to the ResNet model (He et al., 2016a). As shown in

Fig. 3, three identity residual blocks and one linear projec-

tion block are used, with batch normalization to bound the

statistical moments of the feature maps across layers (Ioffe

and Szegedy, 2015).

As shown on the left of Fig. 3, the inputs contain the mag-

nitude of the frequency-dependent pressure fields in F¼ 14

two-dimensional images, jpðr; fÞj 2 R12�12�14, and the exam-

ple on the top-left illustrates one of the output feature maps in

the first convolutional layer. The right of Fig. 3 shows the net-

work output with the frequency-dependent sound absorption

coefficients in a vector, aðfÞ 2 R14. Essentially, the model is

trained to learn the map: aðfÞ ¼ NNfjpðr; fÞjg.
Note that a single-layer microphone array is used, in

contrast to acoustic holography-based methods, e.g.,

Hirosawa et al. (2009), Nolan (2020), Ottink et al. (2016),

and Tamura (1990), that use multiple layers to separate inci-

dent from reflected fields. The absolute pressure field is also

used instead of the complex-valued pressure field. The moti-

vation behind these choices is to reduce the size of the input

(number of sensor positions and input channels) and, conse-

quently, the number of trainable parameters and training

time of the network. It is worth mentioning that CNNs are

discretization-variant methods; thus, their accuracy is gener-

ally proportional to the image dimensions used for training.

In the development of this work, it has been observed

that models with residual learning perform better than those

without [e.g., LeNet-like (Zea et al., 2021)]. Other interest-

ing approaches include residual learning blocks from the

Inception (Szegedy et al., 2015), Xception (Chollet, 2017),

and Inception-ResNet (Szegedy et al., 2017) models. It has

been observed from the data in the present study that differ-

ences in performance are marginal across models with dif-

ferent residual blocks. A comparison of the performance

across these models is out of the scope of the present paper.

The proposed neural network has 239 274 trainable

parameters and is trained with a batch size of B¼ 128. The

loss function is the mean-squared error (MSE),

MSE ¼ 1

B� F

XB

i¼1

XF

j¼1

ai;j � a?i;j
� �2; (9)

where ai;j is the reference sound absorption coefficient at the

jth frequency of the ith instance of the batch (see Sec.

II B 1); and a?i;j is the corresponding absorption coefficient

predicted with the proposed model. The MSE is chosen in

this study as it is a customary choice in statistical regression

problems (Goodfellow et al., 2016) and indicates the vari-

ance between the predicted and reference sound absorption

coefficients.

The network weights are optimized with the training set

using the Adam optimizer (Kingma and Ba, 2015) as its per-

formance is superior to other optimizers tested in this work.

The initial learning rate is set to 10�3, and no learning

schedule is used. For validation and testing with unseen

data, the metrics computed are the MSE and the mean abso-

lute error (MAE),

FIG. 3. (Color online) Schematic of the neural network proposed in this paper. Input layer: 12� 12 sound pressure field at center frequencies of 1/3 octave

bands from 100 to 2000 Hz. Output layer: sound absorption coefficient at said frequencies. Top-left: the convolution between the input pressure field and the

kernel yields the (3, 3)th element of the feature map.
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MAE ¼ 1

B� F

XB

i¼1

XF

j¼1

jai;j � a?i;jj: (10)

IV. RESULTS

The network’s development, training, and testing are

done with the KERAS deep learning library (Chollet, 2015).

The code is run in Google Colab, setting 32 GB RAM and

GPU hardware acceleration (NVIDIA T4). With these set-

tings, it takes approximately 26 s per epoch to train with the

training dataset of 240 000 absorbers. The network’s

weights are initialized with KERAS’s default uniform initial-

izer XAVIER, and training is stopped at 200 epochs as the vali-

dation loss converges at this point.

A. Training and validation results

To assess the impact of the size of the training set on

the learning, the proposed network is trained with 100%,

50%, and 10% of the training set, resulting in models

M1; M1=2, and M1=10, respectively. Figure 4 shows the cor-

responding learning curves.

As shown in Fig. 4(a), the training loss converges more

slowly and to a larger value as the training dataset becomes

smaller. It can be seen that the three models reach a training

loss of 2� 10�4 at approximately 20, 40, and 160 epochs;

in close correspondence with the dataset sizes ð1 : 2 : 10Þ. A

similar observation can be drawn from the validation loss in

Fig. 4(b). Nevertheless, the differences between the models

M1 and M1=2 are relatively marginal, suggesting that the

training performance might reach a limit of no substantial

improvement beyond half the training dataset. The valida-

tion loss suggests that, after 200 epochs, the network will

likely learn noise from the data, eventually leading to an

overfitted model.

The dataset size also influences the training speed:

fewer batches per epoch imply quicker training. Model M1=2

takes about 13 s per epoch, while model M1=10 takes about

3 s per epoch using the GPU resources in Google Colab.

Recall that model M1 takes 26 s per epoch with the complete

training set.

B. Performance with interpolation and extrapolation
sets

Table II shows the performance metrics for the pro-

posed model and the two test datasets. The extrapolation test

set is more challenging for the network since it represents

parameters drawn from a wider distribution than those used

for training (see Secs. II B 2 and II B 3). This is likely why

the MSE values are two orders of magnitude larger with the

extrapolation test set than the interpolation test set.

When tested with the interpolation dataset, it can be

seen that the MSE of the models M1 and M1=2 are margin-

ally close, within a 5� 10�5 difference. The MSE of the

model M1=10 differs by approximately 5� 10�4 from those

of M1 and M1=2. A similar observation can be drawn from

the MAE of M1=10, which is about twice that of the M1 and

M1=2. Regarding the extrapolation dataset, the MSE and

MAE values for the three models are rather uniform, within

5� 10�2 and 2� 10�1, respectively, and do not vary as

much as with the interpolation dataset. It can be argued that

the unseen data in the extrapolation dataset, in contrast to

the seen data in the training dataset (cf. Table I), causes the

error metrics in Table II to be similar despite the different

size of the training sets. Another result that can be pointed

FIG. 4. Mean-squared error (MSE) versus epochs for varying sizes of the training set (100%, 50%, and 10%) with the proposed method. (a) Training loss.

(b) Validation loss.

TABLE II. Mean-squared error (MSE) and mean-absolute error (MAE) for

the proposed model trained with 100% (M1), 50% (M1=2), and 10% (M1=10)

of the training set, and tested with the interpolation (I) and extrapolation (X)

datasets. The MSE values at the 200th epoch of the training (T) and valida-

tion (V) loss are shown for comparison.

Dataset Metric M1 M1=2 M1=10

T MSE 3:9� 10�5 5:6� 10�5 1:5� 10�4

V MSE 2:9� 10�4 3:4� 10�4 8:4� 10�4

I MSE 2:8� 10�4 3:3� 10�4 8:3� 10�4

MAE 1� 10�2 1:2� 10�2 1:9� 10�2

X MSE 4:9� 10�2 5:3� 10�2 5:6� 10�2

MAE 1:6� 10�1 1:7� 10�1 1:8� 10�1
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out here is that the models M1 and M1=2 have a relatively

similar statistical performance, which suggests that far less

training data is sufficient.

C. Prediction of sound absorption coefficients

This section compares the proposed method’s predictive

performance against the two-microphone method for a few

absorbers from the interpolation and extrapolation datasets.

As shown in Fig. 1 and mentioned in the Appendix, the posi-

tions of the receivers in the two-microphone method are

kept fixed for all the cases, at 1 and 3 cm above the center of

the sample.

Figure 5 compares the sound absorption coefficients for

one sample from the interpolation dataset. A 3D view of the

BEM model and the pressure field inputs are also shown in

Figs. 5(a) and 5(b), respectively. The sound absorption

curves in Fig. 5(c) are obtained with the analytical model

according to (Allard and Atalla, 2009) [see Eq. (6)]; with

the two-microphone method (Allard and Sieben, 1985); and

with the proposed network trained with 100% of the training

dataset (M1). An excellent agreement can be observed

between the sound absorption coefficients predicted by the

network and the analytical model, indicating that the pro-

posed method can effectively mitigate the finite-size effect.

This is also expected from the results in Table II. However,

more significant discrepancies are observed with the two-

microphone method, attributed to the edge diffraction

effects captured by the receivers.

Figure 6 shows the corresponding results for two

absorbers from the extrapolation dataset. The sound absorp-

tion coefficient of the first case, shown in Fig. 6(c), is under-

estimated by the two-microphone method. Indeed, this is a

case where strong finite-size effects are present at the micro-

phones due to the oblique incidence angle of the sound

source, which also challenges the plane wave assumption of

the two-microphone method. In addition, a tendency of the

two-microphone method to underestimate the sound absorp-

tion of highly reflecting samples has been observed, e.g.,

Alkmim et al. (2021). In contrast, the proposed method

demonstrates an excellent agreement with the analytical

model. This can be attributed to the array distance being

4.4 cm, which is not far from the distance of 2 cm chosen in

the training set. The network generalizes well to unseen source

distance and array rotations for this particular absorber.

The scenario of the second absorber, shown in the bot-

tom row of Fig. 6, is particularly challenging for the proposed

method because the array distance from the sample is

17.7 cm, almost nine times further than the distance chosen

in the training set. Additionally, the source distance,

krqk ¼ 1:1 m, lies outside the range of the distances chosen

in the training set (between 1.2 and 1.8 m). This likely causes

the proposed method to overestimate the sound absorption

obtained with the analytical model at all frequencies, imply-

ing that the network cannot generalize well for this measure-

ment scenario. The sound absorption coefficients predicted

by the two-microphone method agree reasonably well with

those predicted by the analytical model. Nevertheless, more

substantial variations in the performance could arise if the

two microphones were placed further away from the sample

(Brand~ao et al., 2012). Section V B includes a detailed analy-

sis of the sensitivity of the proposed method against unseen

data, which further supports these results.

V. SENSITIVITY ANALYSIS

This section examines the sensitivity of the proposed

model to measurement noise and unseen data. The model

chosen for the analysis is M1.

A. Measurement noise

To examine the predictive performance of the proposed

model against measurement noise, the sound pressure field

pðf Þ 2 C
M

at the M microphone positions of the array is

artificially contaminated with noise at frequency f,

peðf Þ ¼ pðf Þ þ eðf Þ; (11)

where the noise vector eðf Þ 2 C
M

is complex Gaussian with

zero mean and variance E(f), according to a given signal-to-

noise ratio (SNR). The SNR is defined as

(a) (b) (c)

FIG. 5. (Color online) (a) 3D view of the BEM model, (b) input pressure fields, and (c) sound absorption coefficient spectrum of an absorber from the inter-

polation set: Lx¼ 43 cm, Ly¼ 73 cm, r ¼ 38:9 kN s/m4, d¼ 10.3 cm, krqk ¼ 1:5 m, h ¼ 10:9�; / ¼ 297:6�, and z¼ 2 cm.
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SNR ¼ 10 log10

Pðf Þ
Eðf Þ ; (12)

where Pðf Þ ¼ kpðf Þk2=M is the array signal power at fre-

quency f. The noise variance is thus obtained via Eq. (12) as

Eðf Þ ¼ Pðf Þ � 10�SNR=10. Note that the absolute sound pres-

sure used as input for the CNN model is computed after add-

ing the noise, i.e., taking the absolute value of Eq. (11).

The noise is added in a frequency-dependent manner,

i.e., different random realizations per frequency, and in a

sensor-independent way using the signal power of the pres-

sure field per frequency. The SNR values range from 0 to

30 dB, with 5 dB increments.

Figure 7 summarizes the performance metrics (MSE

and MAE) for both interpolation and extrapolation test sets

and the various SNR values. The MSE with the interpolation

dataset deteriorates much more strongly with decreasing

SNR than with the extrapolation dataset. This suggests that

noise in the interpolation set dominates the differences in

MSE across SNR values. As will later be shown in Sec. V B,

the proposed method is agnostic to unseen array distance up

to around 4–5 cm, and beyond this distance, its performance

deteriorates regardless of the SNR. In contrast, when the

network is exposed to unseen information, as with the

extrapolation set, the MSE does not change as much across

SNR values. A similar observation can be made with the

MAE metric.

B. Noisy measurements for extrapolation set

This last analysis examines the performance of the pro-

posed method in the presence of measurement noise, empha-

sizing unseen data during the training phase and a

(a) (b) (c)

(d) (e) (f)

FIG. 6. (Color online) (a), (d) 3D view of the BEM model, (b), (e) input pressure fields, and (c), (f) sound absorption coefficients of two absorbers from the

extrapolation set. (Top row) Lx¼ 92 cm, Ly ¼ 90:7 cm, r ¼ 78:7 kN s/m4, d¼ 7 mm, krqk ¼ 1:38 m, h ¼ 61:6�; / ¼ 188:8�, z¼ 4.4 cm, and the array is

rotated by 7:1�. (Bottom row) Lx ¼ 43:2 cm, Ly ¼ 95:1 cm, r ¼ 47:3 kN s/m4, d¼ 2.8 cm, krqk ¼ 1:1 m, h ¼ 71:1�; / ¼ 338:8�, z¼ 17.7 cm, and the array

is rotated by 1.7�.

FIG. 7. Mean-squared error (MSE) and mean-absolute error (MAE) against

signal-to-noise ratio (SNR) for the interpolation (I) and extrapolation (X)

sets.
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comparison with the two-microphone method. As presented

in Sec. II B 3, the source distance, array distance, and array

rotation in the extrapolation test set are varied outside the

range of the parameters used to generate the training set.

The extrapolation dataset is clustered into discrete intervals

of source distances, array distances, and array rotations. The

MSE is calculated for each cluster of parameters and SNR

values considered in Sec. V A. Figure 8 summarizes the

results.

It can be seen that the MSE increases with decreasing

SNR in all cases. Nevertheless, the MSE difference in the

absence and presence of noise with 25 dB SNR is relatively

marginal. Interestingly, as shown in Figs. 8(a) and 8(c), the

MSE curves are more or less constant across source distan-

ces and array rotations, respectively, for each of the SNR

values. This means the proposed model can generalize well

to unseen source distances and array rotations. It can be con-

jectured that the various incidence angles of the source in

the training set help the network learn features similar to

those in sound fields with rotated arrays, thus allowing the

proposed method to predict sound absorption regardless of

the array rotation accurately.

As shown in Fig. 8(b), however, there is a trend of

increasing MSE (i.e., overfitting) with increasing array dis-

tance, noticeable for less noisy measurements (e.g., SNR

� 25 dB). This observation supports the noiseless results in

Figs. 6(c) and 6(e), where the proposed model performs better

when the array is closer to 2 cm (i.e., the distance used in the

BEM model to generate the training set). In particular, the

MSE performance in Fig. 8(b) is relatively similar up to array

distances of 5 cm, with variations on the order of 5� 10�3.

The increase in MSE of Fig. 8(b) is gentle and suggests that

the model is not overfitting too much. At any rate, the pro-

posed model is suspected of having more difficulties general-

izing to a new range of array distances than an expanded set

of source distances. Similar results have been observed with

the MAE metric, not shown here for conciseness.

Additionally, the proposed and the two-microphone

models are compared in Fig. 9, considering five frequencies

and four clusters of array distances. The central learning is

the interplay between frequencies and edge-diffraction and

between array distance and overfitting, and how these

determine the statistical performance of the proposed

method and the two-microphone method. At 125 and

250 Hz, the proposed method has more counts of smaller

errors compared to the two-microphone method. For the

array distance cluster of z¼ 3 cm (top row of Fig. 9), the

neural network performs at least as well as the two-

microphone method at all frequencies. However, similar to

the results in Sec. IV C and Fig. 6(f), the bottom rows of

Fig. 9 show that the performance of the proposed method

deteriorates due to the pressure field at unseen array distan-

ces, in particular at frequencies beyond 500 Hz, rendering

the two-microphone method more accurate. That the two-

microphone method performs worse (better) at low (high)

frequencies corroborates the stronger (weaker) contribution

of edge diffraction to the sound field. It is worth noting that

the error distributions of the two-microphone method differ

slightly row-wise, although the array distance variable is

meaningless for this method. This is likely because no com-

bination of BEM parameters is identical in the extrapolation

dataset.

Another way to understand this result is from the per-

spective of the area of the sample. It is known that as the

absorber size exceeds the acoustic wavelength, the micro-

phones hardly capture the diffracted sound field, and the

two-microphone method approximates the sound absorption

coefficient as if the sample were infinite. Conversely, as the

absorber size is smaller than the wavelength, the diffracted

sound field contaminates the predictions of the two-

microphone method.

Plotting similar results to those in Fig. 9 by clustering

sample area instead of frequencies is possible. The error dis-

tributions follow a similar behavior (not shown here for

brevity): the neural network performs better than the two-

microphone method for the smaller absorbers, i.e., as the

acoustic wavelength becomes larger than the sample’s size.

VI. CONCLUSION

The results from this study illustrate the potential of

machine learning to mitigate the finite-size effect across a

wide frequency range and for various porous absorber

dimensions, flow resistivity values, source distances, and

array rotations. In particular, the network can generalize

(a) (b) (c)

FIG. 8. (Color online) Sensitivity of the mean-squared error (MSE) to noisy pressure fields and unseen source distances, array distances, and array rotations.

The orange regions indicate the parameters the network saw during training. Mean-squared error (MSE) for clustered sets of the extrapolation dataset and

varying SNR. (a) MSE versus source distance. (b) MSE versus array distance. (c) MSE versus array rotation.
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well to source distances and array rotations not shown during

the training phase. Although the proposed method is more

complex than the two-microphone method regarding instru-

mentation and hardware, its accuracy for small absorbers at

low frequencies is superior. The current bottleneck of the

proposed method is the inability to generalize to unseen array

distances. A way to overcome this is to fine-tune the model

with a training set generated with various array distances.

A natural extension of the present work is to train the

machine learning architecture with more realistic data. For

instance, to deal with situations where the surface impedance

is not constant along the sample’s surface (e.g., spherical wave

incidence). Alternatively, to deal with situations in which the

sample is not flush mounted above the baffle, is contained in a

frame, or has free edges. Furthermore, given the experimental

validity of the BEM method (Brand~ao et al., 2012), it is of

great interest to validate the proposed model—trained with

simulations—in an experimental scenario. This requires the

design and deployment of a new measurement setup since the

sampling parameters (e.g., microphone spacing and array

dimensions) of experiments in the literature are incompatible

with the proposed method. Training data in reverberant spaces

can also be used to account for reflections from the environ-

ment. These topics are the subject of future research.
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APPENDIX: TWO-MICROPHONE METHOD

The two-microphone method (Allard and Sieben, 1985)

uses two microphones placed along the normal to the sur-

face of interest to separate the incident and reflected compo-

nents of the field. This is done under the assumption of

specular reflection, such that the reflected sound field arises

from the image source at r0q as a spherical wave (Li and

Hodgson, 1997). Furthermore, the reflection coefficient is

assumed to be that of plane waves. The sound pressure at

the microphone positions ri and frequency f is thus

pðri; f Þ ¼
e�jk0kri�rqk

kri � rqk
þ Rðf Þ e

�jk0kri�r0qk

kri � r0qk
; (A1)

where ri, i¼ 1, 2 are the positions of the two microphones.

The reflection coefficient of the sample follows:

Rðf Þ ¼

e�jk0kr2�rqk

kr2 � rqk
� pðr2Þ

pðr1Þ
e�jk0kr1�rqk

kr1 � rqk
pðr2Þ
pðr1Þ

e�jk0kr1�r0qk

kr1 � r0qk
� e�jk0kr2�r0qk

kr2 � r0qk

; (A2)

and the sound absorption coefficient is obtained via

FIG. 9. (Color online) Error histograms obtained with the two-microphone method (blue/back) and the proposed method (red/front) with the noiseless

extrapolation dataset at five frequencies (columns) and four clusters of array distances (rows). The error in the abscissae is the logarithmic squared error per

frequency, log10jaðf Þ � a?ðf Þj2, where a is the sound absorption coefficient produced with the analytical model, and a?ðf Þ is the sound absorption coefficient

obtained with the method of choice (two microphones or proposed).
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a?ðf Þ ¼ 1� jRðf Þj2: (A3)

In an experimental setting, the distance between the two

microphones must be large enough such that a phase differ-

ence is observed (Allard and Sieben, 1985), yet small

enough to avoid spatial aliasing. The microphones are

placed at 1 cm and 3 cm above the sample for numerical

illustrations in the present paper.

1For air at room temperature, fmax 	 3:4 kHz in this study.
2Datasets, models, and codes are available online (Zea, 2023).
3A physical interpretation of point-wise convolutions applied to pressure

fields at multiple frequencies is that features can be learned from spatial

and spectral domains. In the context of this study—taking the first convo-

lutional layer as an example, a point-wise filter learns features from the

sound pressure spectra.

Alkmim, M., Cuenca, J., De Ryck, L., and Desmet, W. (2021). “Angle-

dependent sound absorption estimation using a compact microphone

array,” J. Acoust. Soc. Am. 150(4), 2388–2400.

Allard, J. F., and Atalla, N. (2009). Propagation of Sound in Porous Media:
Modelling Sound Absorbing Materials, 1st ed. (Wiley, Chichester, UK).

Allard, J. F., and Sieben, B. (1985). “Measurements of acoustic impedance

in a free field with two microphones and a spectrum analyzer,” J. Acoust.

Soc. Am. 77(4), 1617–1618.

Atalla, N., and Sgard, F. (2015). Finite Element and Boundary Element
Methods in Structural Acoustics and Vibration, 1st ed. (CRC Press, Boca

Raton, FL).

Bianco, M. J., Gerstoft, P., Traer, J., Ozanich, E., Roch, M. A., Gannot, S.,

and Deledalle, C.-A. (2019). “Machine learning in acoustics: Theory and

applications,” J. Acoust. Soc. Am. 146(5), 3590–3628.

Brand~ao, E., and Fernandez-Grande, E. (2022). “Analysis of the sound field

above finite absorbers in the wave-number domain,” J. Acoust. Soc. Am.

151(5), 3019–3030.

Brand~ao, E., Lenzi, A., and Cordioli, J. (2012). “Estimation and minimiza-

tion of errors caused by sample size effect in the measurement of the nor-

mal absorption coefficient of a locally reactive surface,” Appl. Acoust.

73(6-7), 543–556.

Brand~ao, E., Lenzi, A., and Paul, S. (2015). “A review of the in situ imped-

ance and sound absorption measurement techniques,” Acta Acust. Acust.

101(3), 443–463.

Chollet, F. (2015). “Keras: Deep Learning for humans,” https://github.com/

fchollet/keras (Last viewed March 5, 2023).

Chollet, F. (2017). “Xception: Deep Learning with depthwise separable

convolutions,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1800–1807.

de Bruijn, A. (1973). “A mathematical analysis concerning the edge effect

of sound absorbing materials,” Acta Acust. Acust. 28(1), 33–44.

Foy, C., Deleforge, A., and Di Carlo, D. (2021). “Mean absorption estima-

tion from room impulse responses using virtually supervised learning,”

J. Acoust. Soc. Am. 150(2), 1286–1299.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning (MIT

Press, Cambridge, MA).

G€otz, G., Falc�on P�erez, R., Schlecht, S. J., and Pulkki, V. (2022). “Neural

network for multi-exponential sound energy decay analysis,” J. Acoust.

Soc. Am. 152(2), 942–953.

Hahmann, M., Verburg, S. A., and Fernandez-Grande, E. (2021). “Spatial

reconstruction of sound fields using local and data-driven functions,”

J. Acoust. Soc. Am. 150(6), 4417–4428.

He, K., Zhang, X., Ren, S., and Sun, J. (2016a). “Deep residual learning for

image recognition,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 770–778.

He, K., Zhang, X., Ren, S., and Sun, J. (2016b). “Identity mappings in deep

residual networks,” in Computer Vision—ECCV 2016, edited by B. Leibe,

J. Matas, N. Sebe, and M. Welling (Springer, Cham, Switzerland), pp.

630–645.

Hirosawa, K., Takashima, K., Nakagawa, H., Kon, M., Yamamoto, A., and

Lauriks, W. (2009). “Comparison of three measurement techniques for

the normal absorption coefficient of sound absorbing materials in the free

field,” J. Acoust. Soc. Am. 126(6), 3020–3027.

Hochreiter, S. (1991). “Untersuchungen zu dynamischen neuronalen

netzen,” (“Studies on dynamic neural networks”), diploma thesis, Institut

fur Informatik, Technische Universit€at Munich, Munich.

Ioffe, S., and Szegedy, C. (2015). “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” in Proceedings of
the 32nd International Conference on International Conference on
Machine Learning, ICML’15, Lille, France, Vol. 37, p. 448–456.

ISO (1998). ISO 10534-2:1998: “Acoustics – Determination of sound absorp-

tion coefficient and impedance in impedance tubes – Part 2: Transfer-func-

tion method” (International Organization for Standardization, Geneva,

Switzerland).

ISO (2003). ISO 354:2003 “Acoustics – Measurement of sound absorption

in a reverberation room” (International Organization for Standardization,

Geneva, Switzerland).

Jeon, J. H., Chemali, E., Yang, S. S., and Kang, Y. J. (2021).

“Convolutional neural networks for estimating transport parameters of

fibrous materials based on micro-computerized tomography images,”

J. Acoust. Soc. Am. 149(4), 2813–2828.

Kingma, D. P., and Ba, J. (2015). “Adam: A method for stochastic opti-

mization,” CoRR abs/1412.6980.

L€ahivaara, T., K€arkk€ainen, L., Huttunen, J. M. J., and Hesthaven, J. S.

(2018). “Deep convolutional neural networks for estimating porous mate-

rial parameters with ultrasound tomography,” J. Acoust. Soc. Am. 143(2),

1148–1158.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). “Deep learning,” Nature

521(7553), 436–444.

LeCun, Y., Jackel, L., Boser, B., Denker, J., Graf, H., Guyon, I.,

Henderson, D., Howard, R., and Hubbard, W. (1989). “Handwritten digit

recognition: Applications of neural network chips and automatic

learning,” IEEE Commun. Mag. 27(11), 41–46.

Li, J.-F., and Hodgson, M. (1997). “Use of pseudo-random sequences and a

single microphone to measure surface impedance at oblique incidence,”

J. Acoust. Soc. Am. 102(4), 2200–2210.

Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., and Alsaadi, F. E. (2017). “A

survey of deep neural network architectures and their applications,”

Neurocomputing 234, 11–26.

Luo, Z.-W., Zheng, C.-J., Zhang, Y.-B., and Bi, C.-X. (2020). “Estimating

the acoustical properties of locally reactive finite materials using the

boundary element method,” J. Acoust. Soc. Am. 147(6), 3917–3931.

Michalopoulou, Z.-H., Gerstoft, P., Kostek, B., and Roch, M. A. (2021).

“Introduction to the special issue on machine learning in acoustics,”

J. Acoust. Soc. Am. 150(4), 3204–3210.

Miki, Y. (1990). “Acoustical properties of porous materials-modifications

of Delany-Bazley models,” J. Acoust. Soc. Jpn. (E) 11(1), 19–24.

Mommertz, E. (1995). “Angle-dependent in-situ measurements of reflec-

tion coefficients using a subtraction technique,” Appl. Acoust. 46(3),

251–263.

M€uller-Giebeler, M., and Vorl€ander, M. (2021). “Modeling the edge effect

for inverse determination of porous absorbers using feed forward neural

networks,” Euronoise, e-Congress.

Nair, V., and Hinton, G. E. (2010). “Rectified linear units improve restricted

Boltzmann machines,” in Proceedings of the 27th International
Conference on International Conference on Machine Learning
(ICML’10), Omnipress, Madison, WI, p. 807–814.

Nolan, M. (2020). “Estimation of angle-dependent absorption coefficients

from spatially distributed in situ measurements,” J. Acoust. Soc. Am.

147(2), EL119–EL124.

Otsuru, T., Tomiku, R., Din, N. B. C., Okamoto, N., and Murakami, M.

(2009). “Ensemble averaged surface normal impedance of material using

an in-situ technique: Preliminary study using boundary element method,”

J. Acoust. Soc. Am. 125(6), 3784–3791.

Ottink, M., Brunskog, J., Jeong, C.-H., Fernandez-Grande, E., Trojgaard,

P., and Tiana-Roig, E. (2016). “In situ measurements of the oblique inci-

dence sound absorption coefficient for finite sized absorbers,” J. Acoust.

Soc. Am. 139(1), 41–52.

Richard, A., Fernandez-Grande, E., Brunskog, J., and Jeong, C.-H. (2017).

“Estimation of surface impedance at oblique incidence based on sparse

array processing,” J. Acoust. Soc. Am. 141(6), 4115–4125.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A. (2017). “Inception-

v4, Inception-ResNet and the impact of residual connections on learning,”

J. Acoust. Soc. Am. 154 (4), October 2023 Zea et al. 2331

https://doi.org/10.1121/10.0021333

https://doi.org/10.1121/10.0006566
https://doi.org/10.1121/1.392008
https://doi.org/10.1121/1.392008
https://doi.org/10.1121/1.5133944
https://doi.org/10.1121/10.0010355
https://doi.org/10.1016/j.apacoust.2011.09.010
https://doi.org/10.3813/AAA.918840
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1121/10.0005888
https://doi.org/10.1121/10.0013416
https://doi.org/10.1121/10.0013416
https://doi.org/10.1121/10.0008975
https://doi.org/10.1121/1.3242355
https://doi.org/10.1121/10.0004768
https://doi.org/10.1121/1.5024341
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/35.41400
https://doi.org/10.1121/1.419634
https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1121/10.0001393
https://doi.org/10.1121/10.0006783
https://doi.org/10.1250/ast.11.19
https://doi.org/10.1016/0003-682X(95)00027-7
https://doi.org/10.1121/10.0000716
https://doi.org/10.1121/1.3125327
https://doi.org/10.1121/1.4938225
https://doi.org/10.1121/1.4938225
https://doi.org/10.1121/1.4983756
https://doi.org/10.1121/10.0021333


in Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, AAAI’17 (AAAI Press, Washington, DC), pp. 4278–4284.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan,

D., Vanhoucke, V., and Rabinovich, A. (2015). “Going deeper with con-

volutions,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1–9.

Tamura, M. (1990). “Spatial Fourier transform method of measuring reflec-

tion coefficients at oblique incidence. I: Theory and numerical examples,”

J. Acoust. Soc. Am. 88(5), 2259–2264.

Thomasson, S.-I. (1980). “On the absorption coefficient,” Acta Acust.

Acust. 44(4), 265–273.

Wu, T. (2000). Boundary Element Acoustics: Fundamentals and Computer
Codes, 1st ed. (WIT Press, Southampton, UK).

Yu, W., and Kleijn, W. B. (2021). “Room acoustical parameter

estimation from room impulse responses using deep neural

networks,” IEEE/ACM Trans. Audio. Speech. Lang. Process. 29,

436–447.

Zea, E. (2023). “finite-absorber-ML,” https://github.com/eliaszea/finite-

absorber-ML (Last viewed July 13, 2023).

Zea, E., Brand~ao, E., Nolan, M., And�en, J., Cuenca, J., and Svensson, U. P.

(2021). “Learning the finite size effect for in-situ absorption meas-

urement,” Euronoise, e-Congress.

2332 J. Acoust. Soc. Am. 154 (4), October 2023 Zea et al.

https://doi.org/10.1121/10.0021333

https://doi.org/10.1121/1.400068
https://doi.org/10.1109/TASLP.2020.3043115
https://github.com/eliaszea/finite-absorber-ML
https://github.com/eliaszea/finite-absorber-ML
https://doi.org/10.1121/10.0021333

	s1
	tr1
	l
	n1
	s2
	s2A
	d1
	d2
	f1
	d3
	d4
	d5
	d6
	s2B
	f2
	t1
	s2B1
	s2B2
	s2B3
	s3
	d7
	s3A
	d8
	s3B
	d9
	d10
	f3
	s4
	s4A
	s4B
	f4
	t2
	s4C
	s5
	s5A
	d11
	d12
	f5
	s5B
	f6
	f7
	s6
	f8
	app1
	dA1
	dA2
	dA3
	f9
	fn1
	fn2
	fn3
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47

